Catch bonds govern adhesion through L-selectin at threshold shear

نویسندگان

  • Tadayuki Yago
  • Jianhua Wu
  • C. Diana Wey
  • Arkadiusz G. Klopocki
  • Cheng Zhu
  • Rodger P. McEver
چکیده

Flow-enhanced cell adhesion is an unexplained phenomenon that might result from a transport-dependent increase in on-rates or a force-dependent decrease in off-rates of adhesive bonds. L-selectin requires a threshold shear to support leukocyte rolling on P-selectin glycoprotein ligand-1 (PSGL-1) and other vascular ligands. Low forces decrease L-selectin-PSGL-1 off-rates (catch bonds), whereas higher forces increase off-rates (slip bonds). We determined that a force-dependent decrease in off-rates dictated flow-enhanced rolling of L-selectin-bearing microspheres or neutrophils on PSGL-1. Catch bonds enabled increasing force to convert short-lived tethers into longer-lived tethers, which decreased rolling velocities and increased the regularity of rolling steps as shear rose from the threshold to an optimal value. As shear increased above the optimum, transitions to slip bonds shortened tether lifetimes, which increased rolling velocities and decreased rolling regularity. Thus, force-dependent alterations of bond lifetimes govern L-selectin-dependent cell adhesion below and above the shear optimum. These findings establish the first biological function for catch bonds as a mechanism for flow-enhanced cell adhesion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow-enhanced adhesion regulated by a selectin interdomain hinge

L-selectin requires a threshold shear to enable leukocytes to tether to and roll on vascular surfaces. Transport mechanisms govern flow-enhanced tethering, whereas force governs flow-enhanced rolling by prolonging the lifetimes of L-selectin-ligand complexes (catch bonds). Using selectin crystal structures, molecular dynamics simulations, site-directed mutagenesis, single-molecule force and kin...

متن کامل

Selectin catch-slip kinetics encode shear threshold adhesive behavior of rolling leukocytes.

The selectin family of leukocyte adhesion receptors is principally recognized for mediating transient rolling interactions during the inflammatory response. Recent studies using ultrasensitive force probes to characterize the force-lifetime relationship between P- and L-selectin and their endogenous ligands have underscored the ability of increasing levels of force to initially extend the lifet...

متن کامل

Adhesive dynamics simulations of the shear threshold effect for leukocytes.

Many experiments have measured the effect of force on the dissociation of single selectin bonds, but it is not yet clear how the force dependence of molecular dissociation can influence the rolling of cells expressing selectin molecules. Recent experiments using constant-force atomic force microscopy or high-resolution microscopic observations of pause-time distributions of cells in a flow cham...

متن کامل

The Shear Threshold Effect for Particle Adhesion to Bioreactive Surfaces: Influence of Receptor and Ligand Site Density

Selectins are cell adhesion molecules that mediate capture and rolling adhesion of white blood cells to vascular walls, an essential component of the inflammatory response. Adhesion through L-selectin requires a hydrodynamic shear stress above a threshold level, a phenomenon known as the shear threshold effect. We have reported that the shear threshold effect can he re-created in cell-free syst...

متن کامل

Avidity enhancement of L-selectin bonds by flow: shear-promoted rotation of leukocytes turn labile bonds into functional tethers

-selectin is a key lectin essential for leukocyte capture and rolling on vessel walls. Functional adhesion of L-selectin requires a minimal threshold of hydrodynamic shear. Using high temporal resolution videomicroscopy, we now report that L-selectin engages its ligands through exceptionally labile adhesive bonds (tethers) even below this shear threshold. These tethers share a lifetime of 4 ms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2004